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ABSTRACT

This thesis treats the problem of incompressible two-

dimensional steady flow past airfoils or airfoil combinations

at large angles of attack. A panel method was developed to

compute the inviscid flow over two cylinders, airfoil-flap

combinations and airfoils in ground effect. In addition,

Cebeci's viscous/inviscid interaction method was applied to

several airfoils and compared with available experimental

data. The agreement is generally quite encouraging.
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I. INTRODUCTION

Two important parameters of interest in the field of aero-

dynamics of airfoils are lift and drag. These can be evalu-

ated either experimentally or theoretically. The desire for

computational methods to aid the design process is promoted

by the need to reduce the number and cost of wind tunnel tests.

This thesis treats the problem of incompressible, two-

dimensional steady flow about airfoils'or airfoil combinations

at large angles of attack. Such flows exhibit strong viscous

flow effects including regions of flow separation. Therefore

methods are required which can account for these effects.

Currently there exist two main methods, namely the direct

computation of viscous flows by means of the Navier-Stokes

equations or the so-called viscous/inviscid interaction method.

The former approach is more straightforward but also much more

expensive and time-consuming. Therefore, the latter approach

is to be preferred if it can be shown that it produces good

agreement with the available experimental results.

It is the purpose of this thesis to contribute to the

evaluation of the viscous/inviscid interaction method. To

this end, the viscous/inviscid computer codes developed by

Cebeci and collaborators at the Douglas Aircraft Company were

obtained and applied to several airfoils.

In addition, a separate panel method was formulated and pro-

grammed in order to obtain the inviscid flow over airfoil

combinations.

12



The basic equations are formulated in Chapter II. Chapter

III addresses the problem of inviscid flow calculations using

the panel method. In Chapter IV the solution of the boundary

layer equations by means of the Cebeci-Keller box method is

explained. Finally, Chapter V describes the viscous/inviscid

interaction problem and presents results of computations. I

13
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II. BASIC EQUATIONS

A. INTRODUCTION

In this chapter, the basic equations of fluid flow are

derived. We find that the resulting equations are PDE's whose

exact solutions exist only in very few cases. The PDE's are

classified, "parabolic," "hyperbolic," "elliptic" depending

on the geometry of their domains of dependence and regions of

influence, and the solution procedures are different according

to the type of equation. Table 2-1 gives a brief classification

of these equations.

TABLE 2-1

CLASSIFICATION OF PDE'S

Elilptic Parabolic Hyperbolic

/ C,. P.

;Physical Upstream No Upstream No Upstream

IMeaning Influence Influence Influence

lExample • Laplace Thin Shear Supersonic

Equations Layer Flow

. Steady Navier-
Stokes

P is perturbation point

is domain on which solution

at P depends

is region of influence of
a perturbation at P

14



For example, the Laplace equation is elliptic. Its solution

would have to be repeated for many iterations so that the up-
stream influence can be gradually propagated (panel method in

Chapter III), but the thin shear layer equations are parabolic.

Their numerical solution can be obtained by marching in the

downstream direction only (Box method in Chapter IV).

B. DERIVATION OF GENERAL EQUATIONS

The continuity equation and the Navier-Stokes equatiQns

are basic for an aerodynamic analysis. We start with the basic

physical concepts and derive the general equations for 2-D,

unsteady, compressible, viscous flow.

1. Continuity Equation

One of the basic laws of "Newtonian mechanics" states

that mass can neither be created nor destroyed. Therefore,

for a fixed control volume (see Figure 2.1), the principle of

mass conservation can be stated that the net mass flow rate

into and out of the control volume equals the time rate of

change of mass within the control volume.

If the central point 'P' has representative fluid proper-

ties (velocity, density, pressure, etc.), then properties at

other locations can be obtained by Taylor series expansions.

Therefore the x-component of the velocity at the center of the

positive x-face (right-hand face) is

2
u + -U(d ) + I x-) . + .. (2.1)

ax

15



dy

,U dx Lau+u dx
ua x P u ax 2

t L Li
--- . dx -

x

Figure 2.1. Control Volume for 2-D

As dx goes to zero, all higher order terms will be dropped,

so that only the first two terms will be considered. Similarly,

the density at the center of the positive x-face is

P + P dx + "" (2.2)
ax 2

. Then the mass flow rate out of the positive x-face is

Mass Flow Rate Out = (Density) (Velocity)(Area)

aO dx ad

(pLI +  (u + 2 xdy3x 2 3x 2. +... (u
= [pu + d-x(pu)-L-]dy (2.3)

By the same procedure the mass flow rate into the control volume

through the negative x-face (left-hand side) is

16
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Mass Flow Rate In = [pu - (pu) L-]dy (2.4)

From Eqs. (2.3) and (2.4), we get the net mass flow rate

through the control volume in the x-direction.

Net Mass Flow Rate = [pu - L (pu) Idy - [pu + 2-(pu)-L-]dyax a

a
= - -(pu)dx dy (2.5)

In a similar manner, the net mass flow rate in the y-direction

is

aa-(pv)dx dy (2.6)

The total mass flow rate through the control volume is

obtained by summing Eqs. (2.5) and (2.6).

Total Net Mass Flow Rate -[-(pu) +2(pv)]dx dy (2.7)ax ay -

Next, we consider the time rate of change of mass within

the control volume.

Time Rate of Change ( dxdy)
of Mass at

= .mp dxdy (2.8)

17



Now we combine Eqs. (2.7) and (2.8) using the concept of

conservation of mass. Then

-[ (pu) + 2(pv)Idx dy = - dy (2.9)I
Therefore we obtain the general form of the continuity

equation for two-dimensional flow as

a(pu) + a(pv) + _ 0 (2.10)
ax ay at

For steady or unsteady incompressible flow, Eq. (2.10) reduces to

au av _.
+ y 0 . (2.10a)ax ay

2. Navier-Stokes Equations

Newton's second law of motion, when mass is conserved,

equivalently states that the rate of change of the momentum of

a body equals the sum of the forces applied to that body, or

d -

F= a- (mV) (2.11)

In considering a small volume element of fluid, there are two

types of forces to be considered, namely surface forces which

are acting on the surface and body forces which are acting on

the fluid inside the elemental volume, such as gravity (see

Figure 2.2).

18
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+ dx
ayx ax 2

<xx xxdx

y I Gravi ty

* ' yx y 2
X ay 2aa

yy ay 2

Figure 2.2. Forces Acting on the Fluid

'u Assuming that the stresses are known at point 'P', we get

O0 expressions for the stresses on the fluid element surfaces "

~by Taylor series expansion.

Net force in dx dx
x-direction due = [ax + - -I2 dy - [°x -x -I]dy
to Normal Stresses x 3 X d

- ax- dx dy (2.12)

*Net force in oo!
x-direction due = [ay + ]x [O x  yxd_2dx
to Shear Stresses yxb 1d[y y 2

= ay dx dy (2.13)

Therefore the total surface forces in the x-direction are

formed by summation of Ecs. (2.12) and (2.13). .

19
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f (surface) = xx + X] dxdy (2.14)

Let (body) be defined as the body force per unit mass with

the following components:

(body) = XI + Y5

Thus, the x-c-omponent of the body force is

fx (body) = m X

= p dxdy.l.X (2.15)

Adding Eqs. (2.14) and (2.15) provides the total force in the

x-direction.

F = fx (surface) and fx (body)

axx
[pX + + y x dxdy (2.16)

Now we consider the rate of change of the momentum of the fluid.

Let us take the x-component only. Then, since the mass is constant,

d dua-(mV) = m

p dxdy(u 3- + v + u-) (2.17)

20



because, u = f[x(t),y(t),t], and by chain-rule

du au dx +u dy + 2u at
dt t + -3y dt at at

@u 2 u +u

Substitution of Eqs. (2.16) and (2.17) into the x-component

of Eq. (2.11) gives the final equation of motion.

DXxx - °YX Cyu au u ;upX + ---- + ]y - + v 2 + (2.18)
x y x ay t

Now we want to show the stress in terms of the velocity com-

ponents. In this thesis we will consider only simple "Newtonian"

fluids obeying Stokes' law. This means that the 'extra' stress

(above hydrostatic pressure) is proportional to the rate of

strain. With the definition,

Extra Stress = constant x (rate of strain)

and introducing p1= coefficient of viscosity,

G -P +2Wi( axx .

au av
axy Jy+

where the pressure in an incompressible fluid is seen to be

equal to minus one-third the sum of the three normal-stress

21
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components in view of Eq. (2.10a). In two dimensions then,

Sxx + Gyy = -2P. Eq. (2.18) then becomes, if the body force

is neglected

au + u Vu _ 1 P 1 xx+ (2.19)at ax a - y p x + p ;x + -a y(.9

Substitution then produces, for incompressible flow,

au + u u2_. + v L1 a2 + ] (2.20)at- ax a-y P x ax 2  Dy a

where v = l/p = kinematic viscosity, and similarly for the

y-component

av v 1 a [ a2v a 2v+ u 2v v + + ___[ (2.21)"-.
at ax ay Ty ax2  aY2

These are the well-known Navier-Stokes equations for two-

dimensional incompressible viscous flow.

C. INVISCID FLOW EQUATION

All real fluid flows are viscous, but inviscid flow can

be assumed outside of a thin boundary layer and a narrow wake

behind the body for large Reynolds numbers. This is the reason

why the inviscid flow equations are important even though they

represent an ideal case. If the flow far upstream is uniform

then it is also irrotational. This allows the introduction of

the velocity potential.

22



1. Velocity Potential

The velocity potential is a function whose gradient

represents the fluid velocity. Thus

_- =u -- - v (2.22)

ax ay

where

= (x,y, t)

Therefore, the significance of the velocity potential lies

in the fact that one equation for can be used rather than

three equations for the velocity components.

2. Laplace Equation

For steady, incompressible flow, the continuity equa-

tion (2.10) becomes

au + -v 0 (2.23)
ax ay =

This equation can be written in terms of velocity

potential by substituting Ea. (2.22). Thus

a2  + 2 0 (2.24)

ax 2  ;y

This is the well-known Laplace equation (vector form is 7 = 0).

It is a linear equation which makes it possible to apply the

principle of linear superposition. For instance,

23



If 4i' 2'"''' 1n satisfy V2 =0, then also r.

2 +  2 +  +  satisfies 2 0.

Thus the flow resulting from the superposition of incompressi-

ble, irrotational flows is also an incompressible and irro-

tational flow. This superposition principle makes it possible

to build up quite complicated flow from a few simple solutions

of Laplace's equation. The singularity (or panel) methods

presented in the next chapter are based on this idea.

D. THIN SHEAR LAYER EQUATIONS

High Reynolds number flows over airfoils (and other con-

figurations) generate a very thin shear layer (boundary layer)

close to the airfoil surface. If 6 denotes the boundary layer

thickness and x the distance from the leading edge of a flat

plate, then it is well-known that

6W~

6(x) ~ /x/U or 6 (x) / $1/Re

where v is the kinematic viscosity and Rex = Ux/v. This formula

shows that

(x << 1 if Re >> 1
x x

Hence the flow outside of the boundary layer can be considered

to be inviscid, but the effect of viscosity cannot be neglected

within this layer. Nevertheless, the Navier-Stokes equations

24
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for steady incompressible flow can be simplified because 
of %

the fact that 6 is much smaller than the representative length

of the airfoil (the chord length). This can be deduced from

the Navier-Stokes equations as follows:

;(au a au au

1 aP + a 2 v + 2 = u a + v 2-v (2.26)

x ax2  ay

u is now replaced by a typical value, say Ue;

x is now replaced by a typical value, say Z;

y is now replaced by a typical value, say 6.

C-

Then 2 can be expressed by U /6;Dy e

can be expressed by U /;

can be expressed by pu2 /Z
-X e

(because P and Ue are related by the Bernoulli equations).

Therefore the x-component terms of the Navier-Stokes equation

can be estimated to have the following magnitudes:

1 up 2 u ou
1 P+ 3(-- +  ) = u + au

3x Oy

2  U2  U2

e e e

25



The magnitude of the term v 2 follows from the applicationDy U
of the continuity equation 2-u + 2-v = 0, i.e., + 0 or

v 6Ue and therefore

U U U 2

au 6e e e2a.

The two viscous terms are of vastly different magnitude

because a 2u/ax2 U /A2 and a 2u/ay2 U /62 hence
e e

22 2 2 2 2a u/ay >> a u/ax and a u/ax can therefore be neglected

2 2 2 2
compared to a u/ay2. Finally, the term v 3 u/ay must be of

the same magnitude as the other terms if the influence of

viscosity is to be retained. The y-component terms of the

Navier-Stokes equations are easily estimated to be smaller

than the x-component terms because

2
av U26 av 6
u U2ax ez2 y .2

and hence are smaller by a factor [. Therefore the two

equations reduce to

2

u a- + v 1 ax + V 2 (2.27)ayy

0 (2.28)

By adding the continuity equation (Eq. (2.23)) to these rela-

tions, we get the basic equations to describe laminar flow

thin shear layers.

26
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E. TURBULENT FLOW

We must deal with the instantaneous properties in the

turbulent flow. Thus the time-mean value concept is applied:

u = U + U'

where u is the time-mean value, and u' is the fluctuating

portion. Similarly,

V = V + V'

P = p + p'

Introducing these relations into Eq. (2.20)

-- a - a 1 ap a2 a 2u + v + V( + )x - ju

au aUV (2.29)
ax ay

We can see that pulu' and pu'v r correspond to a normal stress

and a shear stress. We call these terms turbulent stresses

or Reynolds stresses.

Similar analyses can be done for the y-component equations

and z-component equations in the three-dimensional case. The

extra Reynolds stresses can be summarized by the following

array,

27



axx axy Gxz u v u

ayx ayy ayz - IIv2 uw

a a a utwo 2Czx zy u Vw W

Much of the effort ia turbulent flow studies centers on the

proper modelling of these turbulent terms.
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III. PANEL METHOD

A. INTRODUCTION

The panel method was developed in the 1960's at McDonnell

Douglas by Smith and Hess as a numerical approach for 2-D

and 3-D potential flow problems. This chapter presents the

application of the panel method to 2-D problems about one or

two bodies. The basic idea consists in representing the flow

past a body by a distribution of singularities (sources,

sinks, vortices) on the surface such that the body surface

becomes a streamline.

The numerical approach requires some approximations (the

assumption given in parentheses refers to our approach).

A. The surface of the body is replaced by a finite
number of elements (straight-line-elements).

B. The condition of tangential flow is satisfied at a
finite number of points, the so-called control-
points (midpoints of elements).

C. The singularity distribution of each element is
approximated by some kind of analytical functions
(singularity strengths are assumed to be constant
along any one element, but vary from element to
element).

The advantages of the panel method in comparison with other

procedures are:

A. The panel method does not include an approximation in
the physics--thin airfoil theory does.

B. The panel method can be easily applied to both 2-D
and 3-D problems--a virtually unsolvable task for
conformal mapping procedures, which are confined
to 2-D configurations only.

29
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C. The panel technique can be readily extended to flow
fields past several bodies--a task which causes at
least some troubles in "classical" mapping techniques.

The method's versatility has been proven in various extensions,

e.g., hydrofoils, cascades, nozzles, and even complete air-

craft. Since its origin the method has been improved by

features like higher order approximations to both body surface

and singularity distribution, taking account for compressi-

bility effects, and inclusion of wake models. Today the panel

method is probably our most powerful tool in analyzing poten-

tial flows.

B. NONLIFTING FLOW PAST A BODY

The effects of lift (respectively, camber and angle of

attack) and displacement (resp. thickness) can be studied

separately because of the linearity of Laplace's equation.

This section is concerned about displacement flows due to the

thickness of bodies, a flow which is usually represented by

sources and sinks.

We will first draw the reader's attention to a single

straight-line-element, along which sources of constant strength

are distributed. This simple case allows us to explain the

basics of the panel technique. The source strength X is de-

fined as the volume of fluid discharged per unit area. Since

fluid is ejected perpendicular to the panel's surface in both

directions, discharge velocities are half of the source

strength. The boundary condition for an inclined panel requires
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that the normal component of the free stream velocity is

balanced by this discharge velocity (see Figure 3.1).

= - cos B (3.1)

V..

.tangenti al
velocity +A/2

0 source

panel

Figure 3.1. Boundary Condition at One Inclined Panel

This relation between a geometric quantity ( ) and the unknown

source strength establishes tangential flow on the panel

surface.

Thinas, which are obvious for a single panel, become

slightly more complicated for a structure of panels. Mutual

interference of source panels. i.e., each panel induces a

velocity at other panels, causes the complication. While the

boundary condition of a single panel had been set up by glancing

at a simple geometry sketch, we now better switch to a syste-

matic procedure, emphasizing the concepts of velocity poten-

tial and superposition. We consider a 2-D closed body,
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approximated by several panels and inclined at an angle to

the oncoming flow. Our goal is to derive a relation for the

unknown source strengths from the condition of tangential flow

at the control points. To this end we will give the velocity

potentials of a single source, a source panel, and a closed

body built up by a source panel, in that order.

Radial streamlines and concentric circular equipotentials

characterize one of the very basic potential flows, the single

source flow. Its velocity potential is defined by

single source $(x,y) = -- Znr (3.2)

where r is the distance from (x,y) to the source. Arranging

single sources on a straight line element corresponds in

terms of the velocity potential to a summation of single poten-

tials, in the limit of an infinite number of sources to an

integration over the panel length. Thus the velocity potential

of a source panel can be written as

Z
source panel (x,y) = -Z- f Zn r dS (3.3)

0

m source panels, representing a body, induce a flow field,

whose velocity potential at any point (x,y) is given by

Z.5m M . I
$(x,y) = j(x,y) = -2 Zn r. dS. (3.4)

j=l j j=l2T 0
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(xe 'Yg )" ipit fpn//
XM yi : Control points are

0 x Boundary points

Figure 3.2. Designations for Calculation

>r

0 We call 4 the potential of the flow disturbances due to the dis-

placement flow. The total velocity potential of a nonlifting0

U flow results from a superposition of this displacement flow
0D

O and a uniform flow, which is inclined at an angle a to the

x-axis. L

m 3
¢(x,y) = V coscax + V sin cy + 1 -2 f kn r. dS.j~l 21 0 ]

Recalling the definition of the velocity potential (velocity

equals gradient of potential), the boundary condition of tan-

gential flow takes the form

0 on the surfacecin

Applying this condition within the framework of the panel

method provides a system of equations,
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V cOsa cosa. + V sina sina i + 1 _ f j r

1 01 j=l 2 0 3-(n ri)dSj = 0

for i = l,...,m (3.5)

which establishes zero normal velocity at all control points.

This linear system can be solved for the unknown source

strengths after the integrals have been evaluated.

Concept of influence coefficients

The influence coefficient, Ii is defined as the normal
th6'

velocity at the i panel due to a source distribution of
th

2-strength at the j panel.

I.f -n. r ds (3.6)Ij j 3n

The contribution to the normal velocity at the i panel by

the actual source distribution of the j th panel is the product

of X./27 and the influence coefficient Iij. To compute the .

influence coefficient we must substitute

I2 2
ri j V(xM -xj + (YM yj)i ij ..

in Eq. (3.6) and carry out the differentiation.

j M ( / n )+(YM j
I.. = Z 2 2 dS. (3.7)
13 0 (xM. -x) 2 + (YM-Yj) 2

1 1

34i
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where

ax. =n I Cos

aYi sin

an.

x = X + S. cos.

yj YB. + Sj sin e .

.thThe integration covers the length of the j panel. Finally

we obtain

z [x -(xB+SjcosJ)Cosa [ .- .sine.)]sina i
j B. j+[M (B S

ii f f 1 sin 2 dS.
0 [X M -(x B +S cose ) M -(B +s ' sine) 3

i. B j 1 3 j

(3.8)

Equation (3.8) is expressed in terms of S. only and, afterJ

some manipulations, the integral may be written in the form

j b -CS.
j 2 (3.9)

0 -eS. +fJ J

where

b (xM.-XB.)CoS i + (YM.-YB.)sin .

c cos ajcos + sin ajsin &
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e 2 cos e (x M.- XE.) + 2 sine (yM. -Y

f (xM1 xB 2 +( YB.2

I..c 2_ 3-9nS-S+I 2b-ce 2S.-e j

IckI S+j + -- arctan (3.10)

Determination of unknown source strengths X

Equation (3.5), expressed in terms of Eq. (3.9) and divided

by VO, takes the form

In
7rA! + I X AI. cos a cos .- sin a sin S. (3.11)

1 j=l j 1 1

j76i

where

3 2TrV0

or in the more convenient matrix form

'11 12 ' A{-CoscosS 1 -sinasinS1

12A'-coscacosa -sincasinS2

'ml 'm A'-CosctcosS -sinasin2

(3.12)
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The above set of linear equations can be solved for X! by

Gauss' elimination method or any other linear equation

algorithm.

On-body velocities

The velocity at the midpoint of the ith panel, VS. can
1

be obtained by a spatial derivative of the velocity potential

in tangential direction.

Va (x i,Yi )
VS. as.

a m ! 3 kn rax. aY. m a (zn ri.)
V (cos Ct-i + sin a i + S dS.)

1s j i 1

(3.13)

where

= cos a.

as.

@yj
- sin e.

3S. ei
i1

Therefore

VS  m
cos ccos .+ sin ctsin e. + X! J.. (3.14)

Sj=lJ

where J f --- (kn r. )dS. denotes the tangential velocityj 1 s J

at the ith panel due to a source distribution of 27-strength

at the j th panel.
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The calculation of Jij follows the same procedure as that

of Iij, so

I b -cs.
Sf 2 ds. (3.15)

0 S -eS +f

where

b (x (M.-X B . ) C o s  ei 
+  (YM.-YB.)sin e .

c = e cos e. + sin e. sin e.j l3 i

e = 2cosOj (xM-X) + 2 sin e(yM. YB.

2 3

f (xM-xB.) 2 + (Y )2

1 J 1 3

Positive signs of on-body velocities indicate that velocities

are oriented in the direction of the surface coordinates,

while negative signs indicate opposite directions of veloci-

ties and surface coordinates. The positive direction of

surface coordinates is defined clockwise. Therefore positive

values of on-body velocities are to be expected on the upper

surface, negative values on the lower surface.

Off-body velocities

Streamlines can be determined by computing velocities at

off-body points and using a numerical quadrature to progress

38
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from one point to another point on a streamline. The velocity

components can be expressed according to

a( (x i,Y i )  M X.
U(xi.Yi) = 1x 1 = V cos C+ f zf-.-nrij dS

1 1 00 j=l 27

m 1

V(xiY i ) 11 = V sin a+ £nrij dS.
11i yiC 2Tr ay. ]Y j=l 2

Normalizing the above equations by the free stream velocity

and abbreviating the integrals simplify the relations to

U(xY.) mi
cos a + •- (3.16)V0 j=l 1j

V(xiy i ) m
1 sin a + I IY. (3.17)
V j=l 1.

x

Ix • and Iy. are again influence coefficients, whose evaluation
1] 1'

can be adopted from the already introduced procedure.

x 3 b x - C xS

j = S 2  x S. dS. (3.18)
0 b.-eS.+fJ J

.4.

fy = Y 2 yj dS. (3.19)
0 S2 -eS. +f

3 3
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where

bx = xi XB. by = Yi -YB.

Cx= cos e c = sin e .

y JJ

e= 2[(xi-xB )cos e. + (yi-yB )sin e.)]

J B

f = (x i XB.) + (yi -B.)2

C. CIRCULATORY FLOW

While inviscid 2-D flow theories are not capable of pre-

dicting drag characteristics, information about lift can be

provided by them. Creation of lift is closely related to a

type of flow called circulatory flow. We mentioned already

that the flow around a lifting airfoil can be decomposed into

two elementary flows, i.e., displacement flow and circulatory

flow. Circulation and circulatory flows are the subjects of

this section.

The early approaches of airfoil theory emphasized a flow

model in which the airfoil was represented by an infinitely

thin vortex sheet only. This so-called thin airfoil theory

predicts lift quite well, because lift depends primarily on

circulatory flow. Unfortunately a straightforward extension

of vortex sheets to "surface singularity" method is impossible.

Therefore aerodynamicists have proposed a couple of flow models,
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which allow the implementation of circulatory flows in

"surface-singularity" methods. Examples are:

(1) Smith and Hess represent circulatory flows by a com-
bination of source and vortex distributions. [Ref. 11

(2) Martensen prefers vortex distributions only, but states
the problems in terms of the stream function. [Ref. 2]

(3) Davenport makes use of linearly varying vortex
distributions. [Ref. 3]

Our approach follows the ideas of Smith and Hess. These circu-

latory flows are composed of a vortex distribution, which is

constant along all and for all panels, and a source distribution

of conventional shape.

We start at the very beginnings of vortex flows. Concentric

circular streamlines and radial equipotentials characterize the

flow field of a single vortex. Its velocity potential can be

written as

£ Y-Yv
single vortex (x,y) = - arctan x-v (3.20)

with (xvY v ) as the center of the vortex. A structure of m

vortex panels induces a flow field, whose velocity potential

at any point (x,y) is given by

m y-y.
4(x,y) = F (- --)f arctan - dS. (3.21)

j=l 0 x-x 3.

This flow field differs in two important points from the non-

lifting flow field:

(1) It violates the condition of tangential flow.

(2) The unknown singularity strength F cannot be
determined immediately.
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The task of determining circulation must be postponed to the

implementation of the Kutta condition. Temporarily we set

the vortex strength equal to one. Tangential flow must be

established by the aid of an additional source distribution.

Strengths of this additional source distribution must be com-

puted according to the condition that the normal velocities

due to the vortex distributions at the control points are

balanced by the normal velocities due to the additional source

distribution.

m X. myi. -4'

Sn(r )dS27 3 . j n. (tan. ? )

J.1j .1 j=lj 1 3

Abbreviating the integrals by the above defined influence

coefficients, we get

m m(i) I ) = - I.. for i = 1,...,m (3.22)

*j 3l 3 j=l 13

where

are the unknown strengths whose effect is intended

3 to balance the normal velocities induced by a unit
vortex distribution.

I s  is the normal influence coefficient due to a source
'i distribution.

I.v ) is the normal influence coefficient due to a vortex
' 3distribution.

js) is the tangential influence coefficient due to a

'f source distribution.

J.v) is the tangential influence coefficient due to a
vortex distribution.
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Since influence coefficients of source and vortex distributionsaerltdb (v) - (s)
are related by I ! =-J.. , the above equation can be expressed"' 1ij

according to

m () m (s)
i. I .. I J. . for i = l,...,m (3.23)

j=l J 1 j=l 13

By solving this system for A we determine the properties

of circulatory flow of unit strength.

Calculation of disturbance velocity due to unit circulatory
flow
The disturbance velocity, Vi  is composed of two parts,

one due to the constant vortex distribution, the other due to

the additional source distribution

m v) m (s)

V(v) = 1 J.. + I J.s (3.24)
1 j=l 13 j=l 3 Lj

Making use again of the relation between influence coefficients

(V) (s) we have
ii iJ

m
m (s) m i (s)

(v ) I .. + (3 25)
j=l 1] j=l " (325

D. SYNTHESIZING A COMBINED FLOW

The Kutta condition serves as matching condition for nonlift-

ing and circulatory flow. These two basic flows must be
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superimposed such that flows of upper and lower surface merge

smoothly at the trailing edge. This original version of the

Kutta condition is usually substituted by the condition of

zero load (or equal velocities on both upper and lower sur-

face) at the trailing edge (see Figure 3.3).

-a

Figure 3.3. Single Airfoil: Superposition of Nonlifting
and Circulatory Flow, Controlled by the
Kutta Condition

Since the panel method does not permit the evaluation of -

~velocities at the trailing edge, the Kutta condition is satis- .

a

| fied approximately by requiring that velocities at the control

~~points of the rearmost panels have equal magnitude. Therefore '

": the rearmost panels should be chosen short so that flow at

their midpoints will effectively represent that at the trailing

~edge.

:. Determination of circulation

Suppose 1 s t and m thpanels are the closest panels to the trail-

• ing edge on the lower and upper surface, then we can write the .
4'4
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Kutta condition as

-V N) _ rv (v) = V(N) + rV(v) (3.26)

where \.)denotes the tangential velocity in nonlifting flow.1

Equation (3.26) can be solved for the circulation F.I

Calculation of on-body velocities and of pressure coefficients

Three parts contribute to the total velocity: free stream,

disturbance due to displacement flow and disturbance due to

liftng fow. ay V(N)lifting flow. Say V (  designates the velocity due to the

nonlifting flow including the free stream component and V(v)

represents the velocity due to a lifting flow of unit circu-

lation. Then the total tangential velocity at the midpoint of
th

the i panel is given by

V = VN) + rV~v) (3.27)

Once the velocity has been computed, the pressure, customarily

expressed by means of a dimensionless coefficient C , isP

determined by Bernoulli's equation:

Pi- Po V. 2
Cpi -1 - (- _L) (3.28)

Addendum: More than one body configuration.

One of the main advantages of the panel method is its

easy extension to multi-element airfoils. As a matter of
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fact even flow past an infinite number of bodies can be solved

by means of the panel method, if these bodies are arranged in

form of cascades. The minor changes, which are necessary to

apply the panel method to a finite number of bodies, include:

(1) The overall scheme must provide a circulatory flow
for each lifting body. (The number of nonlifting
flows remains one.)

(2) Flow past each body with lift is subject to a Kutta
condition. Accordingly the numbers of equations
requiring zero load at the trailing edge equals the
number of circulatory flows, which allows the
definite determination of each lifting body's
circulation.

Figure 3.4 illustrates the superposition of nonlifting- and

circulatory flows for a two element airfoil.

'U

/ I .. o . .. .......

-... ........ . . . . . . - .

.. ........... ... . .. ..2 :

Figure 3.4. Two Element Airfoil: Superposition of
Nonlifting and Circulatory Flows
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E. EXAMPLES

This section illustrates the capabilities of the program

"PANEL" which can be applied to 2-D potential flow problems

past one or two bodies.

Flow past one circular cylinder

The source panel technique is applied to the flow past

a circular cylinder. This case is regarded as nonlifting,

i.e., the cylinder experiences no force perpendicular to the free

stream. As sketched in Figure 3.5, the surface of the cylinder

is approximated by eight panels of equal width. For zero angle

of attack, Eq. (3.5) reduces to

A. m X. (Zn r. )
V Cos i  - +  f n. 1 dS. = 0 (3.29)

S2 j=l 2rr j n

j~i

solving a set of 8 simultaneous algebraic equations, the source

strengths and the pressure coefficients can be determined.

V-A

01 X

Figure 3.5. Arrangement of Panels on a Circular Cylinder
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The results are shown in Figure 3.6 where they are com-

pared with analytical results (Cp 1 -4sin 2O).

0p

o ..... .... i.......... ........ ... .............. ..;....

-....... ......... .. ..

....... ...... ... .............. .....
..: .... ... . ... ..

- ......
.. . ..... ............... ........

*-'I - i - -:"

0.0 0.0 -0S.0 1 270X.0 360.0

Figure 3.6. Pressure Coefficient on a Circular Cylinder
Obtained by Using Eight Source Panels
(Marked by 0) in Comparison with the Exact
Solution

This example demonstrates the power of the panel method.

However the reader should be aware that only 8 panels are not

sufficient to describe the geometry in most of the cases.

Basically the achieved accuracy depends on both the shape of

the body and the panel configuration (number of panels and

local widths). A closer spacing is advisable in regions where

severe changes of the pressure distribution are expected

(e.g., leading edge).
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Flow past a pair of circular cylinders

Two circular cylinders are arrangedside-by-side in a uni-

form stream. The surface of each cylinder is replaced by 50

panels of equal width (see Figure 3.7(a)). The computed

velocity distribution on one of the cylinders is shown in

Figure 3.8(b). The reader shall pay some attention to a

comparison between the flow past one and the flow past a pair

of cylinders. Obviously the maximum velocity is increased

by the existence of a second cylinder. The closer the two

cylinders are arranged, the higher the maximum velocity.

While the stagnation points in a single cylinder flow are

located at the farthest down and upstream points of the cylinder,

the disturbance of a second cylinder causes the stagnation

points to move towards the other cylinder. The streamline

picture, given in Figure 3.8, should provide a deeper under-

standing of this kind of flow.

Flow past two element airfoil

The main goal of leading and trailing edge devices is to

obtain a higher lift coefficient. We will investigate the

effect of a single slotted flap on the pressure distribution

of the main airfoil.

The pressure distributions of a single airfoil and of an

airfoil-flap combination are compared in Figure 3.9. The

coordinates of both main airfoil (a NACA 4412) and flap are

listed in Section F (sample input data). The results indicate

that lift increases more than 50% by using a slotted, 21.5

degree deflected flap.
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50 panels "4

T d - O

Id
V. 0

50 panels

(a)

0
.................. ........... ................... ............... ......... ............ ...................

01

. .. . . . . .. . . . . .. . . ... .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. ..... ... ....................'.... .........

R

-90.0 -00.0 30.0 0.0 30.0 60.0 90.0

TWEA

(b)

Fi gure 3. 7. (a)Arrangernent of Panels on Two Cylinders
Side by Side

(b)Calculated Velocity Distribution on One
of Two Identical Circular Cylinders Whose
Centers Are One and a Quarter Diameters
ADart
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f"ACA 4412

I 21.50

I. = 10 degree

............... ......... .......... . .... ........... ................

LEGEND

.0

----------------------------
---------------------------------------------------.

D~~~ ~ ~ ~ .. ............ ............

---- -- ----------------------- -----------

Figure 3.9. Pressure Distributions on a Single and
a Flapped Airfoil

Airfoil in ground effect

Flow past an airfoil in ground effect is another applica-

tion of our program.

The boundary condition at the ground requires vanishing

normal velocity there. We meet indirectly this condition by

arranging the second, imaginary airfoil such that the ground

becomes an axis of symmetry of this "e" flow field (see
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Figure 3.10). Since an axis of symmetry must be impermeable

to fluid particles, the desired flow is obtained without

explicitly satisfying the boundary condition at the ground.

This kind of flow is a challenge to aerodynamicists for several

reasons. Whenever an airplane takes off and lands, it passes

a zone where flow is severely affected by the proximity of the

ground. Wind tunnel experiments must be corrected for wall-

effects, quite a similar situation with grounds below and above

the airfoil. And there was a German experimental seaplane

that makes use of flying very close to the sea level. However,

our numerical experiments will tell only one part of the story

because all these flows are highly 3-dimensional.

Real

Ground

. . . . . . .. . . . . . - , . . g

. ......Image

Figure 3.10. Airfoil in Ground Effect

Let's first question how does the pressure distribution

change near the ground. Figure 3.11 shows that lift is reduced
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0. 4OAL L

Figure 3.11. Pressure Distributions on a Single NACA 4412
and on a NACA 4412 in Ground Effect
(h/c =0.2, a =50)

LEGEND

...... ...... ...... R PA - 5 r
... . ..... -- --

C- .... ............. ... ....I. .... ...

C!

0.0 053.0 1.52.
H/C

Figure 3.12. The Lift of a NACA 4412 Near the Ground
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on the upper surface and increased on the lower surface. In

the particular case the overall lift gain is about 15% of the

lift in free air, but we might not always expect a lift gain.

The actual balance between lift reduction on the upper and

lift increase on the lower surface depends on both distance

from the ground and angle of incidence. Figure 3.12 confirms

that there are cases with less lift than in free air. High

angles of attack and moderate distances from ground are sus-

ceptible constellations to lift loss.

F. I/O--DESCRIPTION AND LISTING OF THE PROGRAM "PANEL"

This program calculates non-lifting and lifting potential

flow past one or two bodies. Any 2-dimensional shape and

any angle of attack, which do not cause flow separation,

are acceptable.

Input data

The data must be arranged in the following order:

(1) Header card;

(2) Coordinates of first body cards (variable number of
cards);

(3) Second body control card;

(4) Coordinates of second body cards (variable number of
cards).

Items 3 and 4 are used only for the 2-body case. The actual

instructions are as follows.

Header card

1-10: Number of bodies (integer)

11-20: Number of points of the first body (integer)

21-30: Angle of attack in degrees (real)
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Coordinates of first body cards

The input procedure of body coordinates requires the follow-

ing sequence: start at the trailing edge, progress on the

lower surface to the leading edge, return on the upper surface

to the trailing edge and finish with the trailing edge. The

trailing edge of closed bodies is input twice, as first and

last point. However airfoils with finite trailing edge thick-

ness should be treated as non-closed bodies, i.e., the last

point input is not the first point repeated.

1-10: X coordinates of the points defining the body (real)

11-20: Y coordinates of the points defining the body (real)

Second body control card

1-10: Number of points of the second body

Coordinates of second body card

The X- and Y-coordinates of the 2nd body are input in the

same format as the coordinates of the first body.

Output

There are two kinds of solutions, non-lifting and lifting,

both of which are preceded by the following column header.

PANEL X Y V C
p

where

PANEL is the number of the panel;

X and Y are the coordinates of control points (not

boundary points);

V denotes the relative velocity (V/V.); and

C denotes the pressure coefficient.
p
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Sample problem

This sample illustrates program input and output. The

data refer to the airfoil-flap example of Section III.E

(see Figure 3.9).

57S



Input

2 35 10.
1. .0
.95 -.0016
.90 -.0022
.80 -.0039
.70 -.0065
.60 -.01
.50 -.014
.40 -.018
.30 -.0226
.25 -.025
.20 -.0274
.15 -.0288
.10 -.0286
.075 -.0274
.05 -.0249
.025 -.0195

U
.0125 -.0143
.0 .0
.0125 .024
.025 .0339
.05 .0473
.075 .0576
.10 .0659
.15 .0789
.20 .0880
.25 .0941
.30 .0976
.40 .0980
.50 .0919
.60 .0814
.70 .0669
.80 .0489
.90 .0271
.95 .0147

1.0 .0
9

1.25 -.15
1.20 -.14
1.15 -.125
1.05 -.08
1.0 -.05
1.05 -.06
1.15 -.09
1.20 -.115
1.25 -.15
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VWL JJWU ZV U9IWrWM d WV W2 . r W .WVNiL V K FlI qV .. . iX r . . . .. .

Output

NONLIFTING SOLUTION
PANEL XM YM V CP
1 0.97500 -0.00080 -3.05132 -8.310552 0.92500 -0.00190 -1.71788 -1.95110
3 0.85000 -0.00305 -1.43382 -1.055834 0.75000 -0.00520 -1.20962 -0.463185 0.65000 -0.00825 -1.11906 -0.252296 0.55000 -0.01200 -1.07063 -0.14625
7 0.45000 -0.01600 -1.03543 -0.07210
8 0.35000 -0.02030 -1.01792 -0.036169 0.27500 -0.02380 -0.97360 0.0521010 0.22500 -0.02620 -0.98044 0.0387411 0.17500 -0.02810 -0.97498 0.0494212 0.12500 -0.02870 -0.95981 0.07876

13 0.08750 -0.02800 -0.92944 0.1361314 0.06250 -0.02615 -0.90437 0.1821215 0.03750 -0.02220 -0.81613 0.33393

16 0.01875 -0.01690 -0.66716 0.5548917 0.00625 -0.00715 -0.06604 0.99564
18 0.00625 0.01200 1.20372 -0.44893
19 0.01875 0.02895 1.51674 -1.3005020 0.03750 0.04060 1.46366 -1.1423021 0.06250 0.05245 1.45104 -1.1055022 0.08750 0.06175 1.44313 -1.08263
23 0.12500 0.07240 1.40582 -0.9763224 0.17500 0.08345 1.38729 -0.9245825 0.22500 0.09105 1.36530 -0.8640526 0.27500 0.09585 1.34794 -0.8169427 0.35000 0.09780 1.24546 -0.55117
28 0.45000 0.09495 1.15851 -0.3421429 0.55000 0.08665 1.07036 -0.14566
30 0.65000 0.07415 0.96331 0.07203
31 0.75000 0.05790 0.82090 0.3261232 0.85000 0.03800 0.55160 0.69573
33 0.92500 0.02090 0.37152 0.8619734 0.97500 0.00735 -0.86208 0.2568135 1.22500 -0.14500 -2.69341 -6.2544736 1.17500 -0.13250 -1.67415 -1.80278
37 1.10000 -0.10250 -0.59324 0.6480638 1.02500 -0.06500 1.34805 -0.81725
39 1.02500 -0.05500 3.04627 -8.27976
40 1.10000 -0.07500 1.49617 -1.2385241 1.17500 -0.10250 0.51932 0.7303142 1.22500 -0.13250 -1.15598 -0.33629

5.9
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LIFTING SOLUTION

PANEL XM YM V CP
1 0.97500 -0.00080 -1.09525 -0.19958
2 0.92500 -0.00190 -0.80975 0.34430
3 0.85000 -0.00305 -0.71356 0.490834 0.75000 -0.00520 -0.65850 0.56638
5 0.65000 -0.00825 -0.63122 0.60157
6 0.55000 -0.01200 -0.60472 0.63432
7 0.45000 -0.01600 -0.56660 0.67897
8 0.35000 -0.02030 -0.52361 0.72583
9 0.27500 -0.02380 -0.47182 0.77738

10 0.22500 -0.02620 -0.43188 0.81348
11 0.17500 -0.02810 -0.35514 0.87387
12 0.12500 -0.02870 -0.22992 0.94714
13 0.08750 -0.02800 -0-07829 0.99387
14 0.06250 -0.02615 0.09794 0.990115 0.03750 -0.02220 0.47846 0.77108
16 0.01875 -0.01690 1.09475 -0.19848
17 0.00625 -0.00715 2.42874 -4.89880
18 0.00625 0.01200 3.46087 -10,97764
19 0.01875 0.02895 3.13743 -8.84344u 20 0.03750 0.04060 2.71609 -6.37716
21 0.06250 0.05245 2.48044 -5.15257
22 0.08750 0.06175 2.34667 -4.50686
23 0.12500 0.07240 2.20878 -3.87871
24 0.17500 0.08345 2.08988 -3.36759
25 0.22500 0.09105 2.00707 -3.02833
26 0.27500 0.09585 1.94596 -2.78674
27 0.35000 0.09780 1.81808 -2.30540
28 0.45000 0.09495 1.69455 -1.87149
29 0.55000 0.08665 1.60093 -1.56299
30 0.65000 0.07415 1.51477 -1.29451
31 0.75000 0.05790 1.43499 -1.05920
32 0.85000 0.03800 1.33681 -0.78706
33 0.92500 0.02090 1.28943 -0.66263
34 0.97500 0.00735 1.09525 -0.19956
35 1.22500 -0.14500 -0.86324 0.25482
36 1.17500 -0.13250 -0.79007 0.37579
37 1.10000 -0.10250 -0.43515 0.81064
38 1.02500 -0.06500 0.41219 0.83010
39 1.02500 -0.05500 1.91951 -2.68453
40 1.10000 -0.07500 1.49954 -1.24862
41 1.17500 -0.10250 1.23353 -0.52159
42 1.22500 -0.13250 0.86324 0.25482

.6
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* Program listing

ccccccCCcCcCcCCCCCCccccccccCCCCcCccCCCCCCCccccccCCccCccccCCccc
C C
C THIS PROGRAM CALCULATES 2-D POTENTIAL FLOW PAST 1 OR 2-BODIES C
C AT ANY ANGLE OF ATTACK. C
C C
C WRITTEN BY :CAPT LEE.HEE WOO C

LC DATE :NOV.28 1985 C
C C
C NOTE sMAXIMUM NUMBER OF PANELS = 200
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

DIMENSION Z(200,200),XB(200),YB(200),BE(200),TH(200) ,V(200)
DIMENSION WKAREA(65000),XM(200),YM(200),VVV(200),VC(200)
DIMENSION CP(200) ,VV(200) ,Y(200,200),A(200) ,V1(200) ,S1CZOO)
DIMENSION VC1C200) ,VC2(200),V2(200),VT(200)

C
LuC --- READ INPUT DATA (FOR FIRST BODY) --

C READ(4,1) NB,NN,AN
1 FORMAT(2I10,F1O.5)

AN =ANN3.141592/180.
A DO 10 I 1,NN
*0 READ(4, 11)XB(I),YB(I)

11 FORMAT(2F10.5)
.u 10 CONTINUE

C
- ~C --- CALCULATE MID-POINTS OF PANELS AND ANGLES THETA--

C
N = N-1
DO 12 I=1,N

K = I+1
XM(I) =(XB(I)+XB(K))/Z.
YM(I) =(YB(I)+YB(K))/2.
THH =(YB(K)-YBCI))/(XB(K)-XB(I))
TH(I)= ATANCTHH)
IF(XB(K) .LT.XB(I)) TH(I)=TH(I)+3.141592

12 CONTINUE
C
C --- CALCULATE PANEL LENGTHS--
C

DO 13 I1 1,N
K = +1
A(I) = SQRT((XB(K)-XB(I))**2+(YB(K)-YB(I))**2)

13 CONTINUE
IF(t4B.NE.1) GO TO 600

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
,.C C

C NON-LIFTING PART (1-BODY) C
C C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
DO 14 1 = 1,N

C
C --- CALCULATE ANGLE BETA AND NORMAL COMPONENT OF FREE STREAM
C VELOCITY
C

* DE(I)= TH(I)+3.141592/2.
a V(I) =-(COS(BE(I))3ECOS(AN)+SIN(BE(I))*SIN(ANl))
a DO 15 J 21,N
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C- CALCULATE INFLUENCE COEFFICIENTS OF NORMAL VELOCITY--
C

IF(I.EQ.J) GO TO 15
B =(XMCI)-XB(J))3ECOS(BECI))+(YM(I)-YBC.J))WSIN(BE(I))
C =COS(TH(J) )NCOS(BECI) )+SIN(TH(J) )*SIN(BE(I))

F = (XM(I)-XBCJ))*Ex2+(YM(I)-YBJ))**i2
H =SQRT(4.EF-E**32)

15 COTINUEZ(I,J) = TEG(B,C,E,F,H,A(J))

Z(I,I)=3.141592
L.14 CONTINUE

C -- SOLVE SET OF LINEAR EQUATIONS FOR SOURCE STRENGTHS --
C

IDGTO
CALL LEQT2F (Z,1,N,200,V,IDGTPWKAREAIER)

C
C -- CALCULATE INFLUENCE COEFFICIENTS OF TANGENTIAL VELOCITY--
C

DO 16 I 1,N
DO 17 J =1,N

IF(I.EQ.J) GO TO 17
> B =(XM(I)-XB(J) )*COS(TH(I) )+(YM(I )-YBCJ) ))SIN(TH(I))

O C = COS(TH(J))3ECOSCTH(I))+SIN(TH(J))*SIN(TH(I))
E = 2.*COS(TH(J) )*(XM(I)-XB(J) )+2.*SIN(TH(J) )*EYM(I)-YB(J))

F =(XM(I)-XB(J))**~2+(YM(I)-YB(J))*x2
H = SQRT(4.3EF-DE**2)

o Y(I,J) = TEG(B,C,EF,H,A(J))
-w 17 CONTINUE

u Y(I,I)=O.O
16 CONTINUE

C
C C--- CALCULATE TOTAL VELOCITY AND CP AT MIDPOINTS OF EACH PANEL--
C

WRITE(8,95)
95 FORMAT(///,25X, 'NONLIFTING SOLUTION',//

)E1OX, 'PANEL'J.5X, 'XM',8X, 'YM',11X, 'V',l0X, 'CP')
DO 18 I 1,N

DO 19 J =1,N

19 CONTINUE = +J*YIi

VV(I) =COS(TH(I))*COS(AN)+SIN(TH(I))*SIN(AN)+S

WRITE(8,93) I,XM(I),YM(I) ,VV(I) ,Cp(I)
93 FORMAT(10X,I3,3X,2F10.5,3X,2F10.5)
18 C014TINUE

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C C
cl LIFTING PART (1-BODY) C
C C

C --- CALCULATE SOURCE STRENGTHS DUE TO CIRCULATORY FLOW OF UflIT
C STRENGTH
C

* DO 20 I 1,N
S 0.
DO 21 J =1,N

21 CONTINUE =SYIJ
V1(I)5S

20 CONTINUE
IDGT =0
CALL LEQT2F (Z,1,N,200,V1DIDGT,WKAREA,IER)
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C
C --- CALCULATE DISTURBANCE VELOCITY DUE TO CIRCULATORY FLOW OF UNIT
C STRENGTH ---
C

DO 22 I 1,N
S =0.
DO 23 J =1,N

S = S+Y(IJ)NV1(J)+Z(I,J)
23 CONTINUE

VC(I)=S
22 CONTINUE

C
C --- CALCULATE VORTEX STRENGTHS BY KUTTA CONDITION ---

SI = -(VV(1)+VV(N))/(VC(1)+VC(N))
C
C --- CALCULATE TOTAL VELOCITY AND CP AT MIDPOINTS OF EACH PANEL ---
C

WRITE(8,96)
96 FORMAT(///,27X,'LIFTING SOLUTION',//

*10X,'PANEL',5X,'XM',8X,'YM',11X,'V',10X,'CP')
DO 24 I =1,N

VVV(I) = VVCI)+SIDVC(I)
CP(I) 1.-VVV(!)*2
WRITE(8,93)I, XM(I),YM(I),VVV(I),CP(I)

24 CONTINUE
25 FORMAT(3F10.5)

GO TO 700
C
C --- READ INPUT DATA (FOR SECOND BODY) ---
C
600 READ(4,31) MM
31 FORMAT(I1O)

DO 32 1 = NN+1,NN+MM
READ(4,11)XB(I),YB(I)

32 CONTINUE
M = NN+MM-2

c
C -- CALCULATE MID-POINTS OF PANELS AND ANGLES THETA ..

DO 33 I=N+1,M
K = I+l
XM(I) = (XB(K)+XB(K+1))/2.
YM(I) = (YB(K)+YB(K+1))/2.
THH = (YB(K+1)-YB(K))/(XB(K+1)-XB(K))
TH(I)= ATAN(THH)
IF(XB(K+1).LT.XB(K)) TH(I)=TH(I)+3.141592

33 CONTINUE,%
C
C --- CALCULATE PANEL LENGTHS ---
C

DO 34 I N+1,M
K = I+1
ACI) = SQRT((XB(K+1)-XB(K))*2+(YB(K+1)-YB(K))*2)

34 CONTINUE
DO 35 1 = N+1,M+I

XB(I) = XB(I+1)
YB(I) = YB(I+I)

35 CONTINUE
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C C
C NON-LIFTING PART (2-BODIES) C
C C

DO 36 1 = 1,M
C
C --- CALCULATE ANGLE BETA AND NORMAL COMPONENT OF FREE STREAM
c VELOCITY

BE(I)= TH(I)+3.141592/2.

C
C --- CALCULATE INFLUENCE COEFFICIENTS OF NORMAL VELOCITY ---
C

DO 37 J = 1,M
IF(I.EQ.J) GO TO 37
B = (XM(I)-XB(J) )NCOS(BE(I))+CYM(I)-YB(J) )*SIN(BE(I))
C =COS(TH(J))3ECOS(BE(I))+SIN(TH(J) )3SINCBE(I))

E =2.3ECOS(TH(J)))E(XM(I)-XB(J))+2.3ESIN(THCJ) )*(YM(I)-YB(J))
F = CXM(I)-XB(J))EE2+(YM(I)-YB(J))**32
H = SQRT(4.)*F-E**2)
Z(I,J) =TEG(B,C,E,F,H,A(J))

37 CONTINUE
Z(I,I)=3.141592

-36 CONTINUE

C--SOLVE SET OF LINEAR EQUATIONS FOR SOURCE STRENGTHS
C IDT 0

IDGT = 0

CALL LEQT2F CZ,1,M,200,V,IDGT,WKAREA,IER)
C
C --- CALCULATE INFLUENCE -CO-EFFICIENTS OF TANGENTIAL VELOCITY ---

DO 38 I 1,M
DO 39 J = ,M

IF(I.EQ.J) GO TO 39
B =(XMCI)-XB(J))*COS(TH(I))+(YM(I)-YB(J) )*SIN(TH(I))
C = COS(TH(J) )3COS(TH(I))+SIN(TH(J) )NSIN(TH(I))

E =2.*COSCTH(J) )3EXM(I)-XB(J) )+2.ESIN(TH(J))*(YMCI)-YB(J))
F =(XMCI)-XB(J) )**2+(YM(I)-YB(J) )*E*2
H =SQRT(4.3*F-E**2)

YCI,J) = TEG(B,C,E,F,H,A(J))
39 CONTINUE

Y(I,I)0O.O
38 CONTINUE

WRITE(8, 95)
C
C --- CALCULATE TOTAL VELOCITY AND CP AT MIDPOINTS OF EACH PANEL
C

DO 40 I 1,M
S~o.
DO 41 J = 1,M

5 = S+V(J)*Y(I.J)
41 CONTINUE*

VV(I) =COS(TH(I))*ECOS(AN)+SINC(TH(I) )*SIN(ANl)+S

WRITE(8,93) I,XM(I) ,YM(I),VV(I),CP(I)
40 CONTI14UE
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CCCccCCCCCCCcCCCccCCccCCCcccccccccccccCCCCCc~cCCCCCCccCcCCCc
C C
c LIFTING PART (2-BODIES) C
C C
cCCCccccccccccccccccccccccCCCCCCCCCcccCCCCCcCCCCccCccccccccCccCCCC~
C -- CLUAESOURCE STRENGTHS DUE TO CIRCULATORY FLOW OF UNIT
C STRENGTH PAST FIRST BODY--
C

DO 42 1 1,M
S 0.
DO 43 J 1 ,M

G =1.
L. IF(J.GT.N) 0=0.

S S+Y(I,J)*G
43 CONTINUE

V1(I)5S
42 CONTINUE

IDGT =0.
CALL LEQT2F (Z,1,M,200,V1,IDGT,WKAREA,IER)

C
C --- CALCULATE DISTURBANCE VELOCITY DUE TO CIRCULATORY FLOW OF UNIT
C STRENGTH PAST FIRST BODY--
C

.0 DO 44 1 1,M
S 0.
DO 45 J 1,M

G =1.
IF(J.GT.N) G=0
S5 S+Y(I,J)*Vl(J)+Z(I,J)*G

:045 CONTINUE
VC1(I)5S

-~44 CONTINUE
* C
LC CALCULATE SOURCE STRENGTHS DUE TO CIRCULATORY FLOW OF UNIT

C STRENGTH PAST SECOND BODY
C

DO 46 1 1,M
S 0.

-DO 47 J 1,M
G 1.
IF(J.LE.N) G=0.
S = S+Y(I,J)*G

47 CONTINUE
V2CI)=S

46 CONTINUE
IDGT=O.
CALL LEQT2F (Z,1,M,200,V2,IDGT,WKAREA, IER)

C
C --- CALCULATE DISTURBANCE VELOCITY DUE TO CIRCULATORY FLOW OF UNIT
C STRENGTH PAST SECOND BODY
C

DO 48 1 1,M4
S 0.
DO 49 J =1,M4

G =1.
IF(J.LE.N) G=0.

49 CONTINUE
VC2CI )=

48 CON4TINUE
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* * * -** rr.' ~ l ~~rY r r~r r2 - **.*.

Cz- ACLT OTXSRNTSB UT ODTO -N
4l=VI1)V1N
X2=V214V2N
X4 = VC1(N1)+VC1()

X5 = VCZCN+1)+VC2(M)
X6 = -VV(N+1)-VV(M)
S12 = CX3xX4-X1XX6)/CX4)EX2-X1XX5)

IL 511 = CX3-X2XSI2)/Xl

C -- CALCULATE TOTAL VELOCITY AND CP AT MIDPOINTS OF EACH PANEL
C

- - WRITEC8, 96)
DO 50 I =1,M

VT(I) =VC1(I)*SI1+VC2CI)3E512
VVV(I) = VVCI)+VT(I)
CP(I) =l.-VVVI)*x32
WRITECS,93)I,XM(I) ,YMCI),VVV(I),CPCI)

50 CONTINUE
700 WRITE(6,97)
97 FORMAT(1X, 'COMPUTATION COMPLETED')

2 STOP
END

C
C -- THIS FUNTION EVALUATES THE INTEGRALS (INFLUENCE COEFFICIENTS) -

3 5.-

FUNCTION TEG(BPCD.P,QPR,S)
TERMi ALOG((Sxx2-PNS+Q)/Q)
TERM2 = ATANC(2.3ES-P)/R)-ATAN(-P/R)

2 TEG =-CNTERM1'2.+C2.*B-C*P)xTERM2/R
RETURN
END
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IV. BOX METHOD

A. INTRODUCTION e

The thin shear layer equations are more complicated than

Laplace's equation because they are nonlinear. This chapter

presents the box-method, which can be applied to the solution

of the thin shear layer equations. The box method was intro-

duced by Keller in 1970 [Ref. 41.

One of the basic ideas of the box method is to write the

governing system of equations in the form of a first-order

system. This system is solved by finite-difference approxima-

tions and Newton's method is applied to solve the equations.

Finally, the resulting linear system is solved by the block-

elimination method.

B. FALKNER-SKAN TRANSFORMATION

The thin shear layer equations for incompressible laminar

flow take the form

au + v = 0 (4.1)
ax ay

Du Du 1ldP D2u
u + v L-- 1 dx +  a u (4.2)

ax Dy p dx 3--(42

Boundary conditions are prescribed at the surface

y = 0 u = 0 v = 0
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and at the edge of the boundary layer

y u = Ue(x) (4.3)

It is convenient to reformulate the equations using the

streamfunction and the similarity concept. Therefore the

Falkner-Skan transformation is introduced.

U 1/2 Re / 2 .
ex xTi=(e) y = x .4!

(x,y) = (U vx) i/ 2f(x, l) (4.5)e

Substituting Eqs. (4.4) and (4.5) into Eq. (4.2), we get the

transformed momentum equation for 2-D laminar flows.

m+l2 ffil0 + 1ff" +m[l-(f')21 = x(f' -"f") (4.6)

2 x ax (4.6)

where

m x eU dx :e

(dimensionless pressure-gradient)

with the boundary conditions

n = 0 f' = 0 f= 0

(4.7)

S= f'= i
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If f is a function of n only, the right-hand terms of Eq.

(4.6) will be zero. Then this will be a third-order ordinary

differential equation whose solution is well-known as a

"similar flow." But, if f is a function of n and x (non-

similar flows), we need a numerical procedure, such as the

box method.

C. NUMERICAL FORMULATION (BOX METHOD) 1'

First of all, the coordinates (x,y) of a given geometry

must be transformed to coordinates ( ,n) to apply the Box

method (see Figure 4.1).

,Stagnation Point

BOX
Ai rfoi ."

/B

Figure 4.1. Transformed Coordinates of Upper Surface
Airfoil and Net Rectangle for Difference
Approximations
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The boundary layer thickness in transformed coordinates is
-1

nearly independent of the streamwise distance and can be

represented by a fixed number of profile points at fixed

spacing.

One of the basic ideas of the Box method is to write the

governing system of equations in the form of a first order

system. We write Eq. (4.6) in terms of a first-order system

of PDE's

f,= u( ,) (4.8a)

.5

u = v(,n) (4.8b)

,m+l,2u

(bv)' + (-)fv + m(l-u2) = (u u - v (4.8c)

where a prime denotes differentiation with respect to

'

and b I +

with the boundary condition

f( ,0) = 0, u( ,0) = 0, u( ,n ) 1 (4.9)

We denote the net points shown in Figure 4.1 as

0 =  0 i = -r + kl i = 1,2,...,1
0o = k

n 0 n + h. j 1,2,...,J r j0o  0 n j-1

.'70°
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And we can introduce the following approximations:

A) Coordinates of midpoints ( i 1) and net functions

(g stands for f, u or v) 2
i- 2 i+ il T._2 n- +( +TIl (4.10a)

i--i
g. 2,(g. +g.j g 1 i g- 1 (41b

where [ ]j means the quantities (f or u or v) at point (i,n.).

B) Finite-difference approximation

From Eqs. (4.8a) and (4.8b), the centered-difference

derivatives are

i i

hu -1 (4.lla)

U. _u.
v-1  i (4.llb)

h.
J.-3

After introducing these approximations into Eq. (4.8) and

rearranging (the known quantities are moved to the right hand

side), we get the equation (4.12c) which is centered about the

point ( 1 ,n 1). This represents the relationship of quan-

tities between ihe points of the box.

h.
fi f. ---(u' + ui 0(.1al -i 2 I .L1 = 0 (4.12a)
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h.
u9 - u I  v +V 1 0 (4.12b)
i i 2b

(bjv. -b v.)/h. + al(fv)i - 2(u 2 . 1j -1vj-l ) j 1.1 2 .1

+ v 1  1- . ) = (4.12c)

where

1 .+i
i-2 m 1 +1c'. = ' i +ct, =M. +ca

12 2 1r*
i-i 2 i-i i f

R {-L 1 +a[(fv) i(u 2 ) 2 1 -m
S-T J J J J -

i bjv. -b. i m+l2 i-i
h. +-(fv) 1+m[l-(u 2) .1

3 - J-2 J -T

The last of the above equations is non-linear. Therefore we
introduce Newton's method to solve this system. We set

(n+l) (n) ( gn)gj (n) + 6 n n = 0,1,2,... (4.13)

where the superscript in parentheses is the iteration counter

with initial condition

%
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f(0) = i (0) 0 u (0) = i-I
0 0 = 0  - 0

fi ui (0) (4.14)

f(0)= fji-I u = 1 V (0 )  = i-i

1 < j < J-l

Introducing Eq. (4.13) to Eq. (4.12) and dropping the quadratic

terms in gi' we get (superscripts i and n are dropped for

simplicity)
h.

6fj - afj - -1 (6uj + 6uj) = (r). (4.15a)
J j- 2 j j-1 1j

S.-

h.
6u. - 3u6 -- J2(rv. + 6v) = (r) 1  (4.15b)

J j-l 2 j j-1 3 j-1

(S1 )j6vj + (S2 )j.6v j+ (S3 )j 6fj + (S4)j6fj_

+ (S 5 )j6u. + (S 6 )uj = (r (4.15c)

where all terms are explained in Reference 5, with the

boundary conditions

6f0  = 0 6u = 0 uj = 0 (4.16)

D. BLOCK ELIMINATION METHOD

This is a very effective way to solve linear difference

equations, discussed by Keller in 1974 [Ref. 6]. We write
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Eq.

Eq. (4.15) in a matrix-vector form

AS = r (4.17)

where

Ao Co 0o ro

B1 A, C1  1 r1A r
A -- ". . " 6 - r --=

B3 -1 A3.1 C3 _1

Bj Aj " r J

where

1 0 0 1 -h/2 0

= 0 1 0 Aj- (S3)J  (S5)J  (S

0 -1 -h 1/2 0 1 0

1 -hj/2 0 0 0 0

A. - (S3)j (S5)j (Sl ~ C - 0 0 0 1 < j _ J-i

0 -1 -hj+ /2 0 1 -hj+/2

-1 -h./2 0

B . (S 4)  (S 6 j (S 2 j 1 _ j < J "-

[0 0 0

where
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5f. 
-'

u 0 < <'

6v . .

(r ) j  0

r (r 2 )  < j < J-i r0 = 0

(r j (r 3

rj (r 2 ) j

0

According to Keller's block elimination method, we have to

factorize the matrix A.

A = PxQ (4.18)

where

Q0  C0

P I Q1  Cl
p -- Q --

l
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I is the identity matrix

I 1 0

From Eq. (4.18), we find that

Q = A (4.19a)
0 0

PQj- = B. j = 1,2,...,J (4.19b)

Qj = Aj-P Cj_ j = 1,2,.. .,J (4.19c)

Keller showed that the matrix P. has the same structure as
J

the matrix B.. From Eq. (4.19), we derive the elements of

P. and Qj.

(PlI)j (P12) j (PI3 ) j.:

P.p
j (P21)j (P22)j (P23) j

0 0 0 4

(qll) J (q 12) J (q 13) J

Qj (q21)j (q2 2 )j (q2 3 )j 0 < j < J-l

0 -1 -hj+ /2
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Each element of P. and Q. is 6-xplained in Reference 5. If

we let

Q6 = W (4.20)

Introducing Eqs. (4.20) and (4.18) into Eq. (4.17),

PW = r (4.21)

Then, from Eq. (4.21), we find that I.,

W r0 .40 0

W. = r. - PjWj I  1 < j < J

The elements of W. are listed in Reference 5. Finally, we
3

get the matrix form to get 6 from Eq. (4.20).

Q0 C0 60 W0

Q1 61 W1

S" " (4.22)

QJ-l Cj-1

Qj 6 j W

From Eq. (4.22), we find that

Qj 6j = Wj(4.23a)
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W-7 I; ... --. 7-1 -5WJ -Y W3 ':Y.

)j~ Wj Cjj+l j J-l,J-2,...,O (4.23b)

Therefore 6. can be obtained by calculating the terms Q,., C.i

and w. (see Reference 5).
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V. INTERACTION METHOD

A. INTRODUCTION

Interactive methods provide a special coupling between

viscous and inviscid flows. They are intended to compute

flows including separation. Thus these methods may be regarded

as an alternative to the Navier-Stokes solvers, which are

hardly engineering tools because of their huge computer time

and storage requirements.

The classical method to compute viscous flows past airfoils

proceeds as follows: The velocity distribution is computed

by any appropriate inviscid flow solver. The output of the

inviscid flow solver becomes the input of the viscous flow

solver. Solving for viscous flow consists of integrating the

boundary layer equations. Provided that the flow remains

attached this procedure allows a reliable prediction of lift

and drag. Information is transferred only once from inviscid

to viscous regions. However many flows cannot be modelled by

one-time information transfers.

Separation bubbles and separated flows especially require

a close coupling between viscous and inviscid regions. Inter-

action schemes provide a better exchange of information between

these two regions.

The elements of interaction schemes are: direct or inverse

inviscid flow solver and direct or inverse viscous flow solver.
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-Boundary Condition
Flow Direct Inverse

Inviscid • Zero normal • Prescription of
velocity at velocity

-"the surface distribution

Viscous • No slip • No slip condition
condition .Prescription of

. Prescription of displacement
external thickness
velocity

The direct boundary layer method has the disadvantage that

the boundary layer equations are singular at the point of

separation. However, if the external velocity is computed

by prescribing a displacement thickness (known as the inverse

boundary layer method), they can be integrated through the

point of separation.

The next problem associated with the regions of reversed

flow is numerical instability, because downstream marching

procedures cannot be applied in regions of reversed flow.

The most common approximation to get this instability under

control, the so-called FLARE approximation, neglects the

momentum transport term u 3u/ax in regions of reversed flow as

long as this region is small. However, as the size of this

region increases, the FLARE approximation becomes inaccurate.

One of the procedures which can be taken into account is

called the DUIT (Downstream, Upstream Iteration). It consists

of a sequence of alternating up and downstream sweeps.

There are several types of recently developed interaction

models. All procedures have to solve both the inviscid (Laplace
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equation) and viscous flow, whose equations can be written

according to

au +u ay (5.1)

dU
uu au _ e (5.2)u avy Ue U + (b y

where

b = 1 = constant in laminar flow

b = 1 + vt/v in turbulent flow

Four interaction models can be distinguished: Direct, Inverse,

Semi-inverse, and Simultaneous interaction methods which are

subject to different boundary conditions.

The most advanced interaction scheme is the simultaneous

interaction. We call it the "strong interaction" (direct and

inverse interactions guarantee weak coupling only). Examples

in Section V.D are computed by the Cebeci program using this

method. Good agreement is obtained between the results of

interaction schemes and experimental results.

B. FOUNDATION OF THE INTERACTION SCHEMES

1. Direct Interaction Scheme

The direct interaction model is composed of a direct

inviscid and a direct viscous flow solver (see Figure 5.1a).

The usual sequence is:
8
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(1) Calculate the external velocity distribution by
inviscid flow computations.

(2) Calculate the displacement thickness, 6*, by viscous
flow computations using the external velocity as
boundary condition.

(3) Compute an updated shape of the displacement body and

repeat steps 1 and 2 until the results converge.

Unfortunately, the direct boundary layer method suffers

numerical breakdown at the point of separation (Goldstein

singularity). Therefore this scheme is not appropriate to r.

handle airfoil flows with separation.

2. Inverse Interaction Scheme

This method was introduced to overcome the singularity

problems near separation. It combines an inverse inviscid and

an inverse viscous flow solver (see Figure 5.1b). However,

the overall procedure suffers from very slow convergence.

Due to this shortcoming one shall apply this inverse scheme

to regions of separated flow only.

3. Semi-Inverse Interaction Scheme

This method combines a direct inviscid flow solver

with an inverse viscous flow solver with the shme input (dis-

placement thickness). This leads to two external velocity

distributions, U e(X) and UeV (x) (see Figure 5.1c). Satis-

factory convergence is ensured by a relaxation formula, which

is introduced to define an updated displacement thickness

distribution.

6*(X) = 6* )[1 + eV H (5.3)
new old U (x)-1
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where w is a relaxation parameter. The numerical weakness of

the purely inverse scheme is improved by this method, but

both inviscid and viscous regions are still coupled loosely.

4. Simultaneous Interaction Scheme

The simultaneous interaction scheme emphasizes strong

interaction between the outer inviscid and the inner viscous

region. The external velocity U (x) and the displacement
e

thickness 6*(x) are treated as unknown quantities. An addi-

tional relation is added, the so-called interaction law which

can be given by the "blowing velocity" concept.

The equaticns are solved by the inverse method with

successive sweeps over the airfoil surface (see Figure 5.1d).

This method is compatible with the weak interaction scheme

where both inviscid and viscous regions are coupled loosely.

For each sweep, the external velocity for the boundary

layer equation is written as

U (x) = U (x) + 6U (x) (5.4)
e e e

where

U (x) is the inviscid velocity;e

6U (X) is the perturbation due to the dis-placement effect of a boundary layer.

The blowing velocity concept is introduced to get the pertur-

bation velocity Ue by the interaction law. The displacement
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effect of a boundary layer can be modelled by ejecting fluid

at the airfoil's surface (see Figure 5.2).

Ym

64 , X O-a.(x)2

Figure 5.2. Blowing Velocity ConceptU]
A properly arranged source distribution on the surface dis-

places the streamlines away from the surface such that the

virtual displacement body becomes a streamline.

Our first.goal is to determine the source strengths such

that the tangential flow condition on the displacement body

takes the form

.. '

'~, * - 6 (5.5)
U (x) dx !

To achieve this goal we use the thin airfoil approximation:

(1) The displacement thickness is assumed to be so
small that u-velocity components do not vary across
the layer.

(2) The airfoil in this connection can be represented by
a straight line. This approximation implies that
the blowing velocity v (x,0) equals half of the
source strength.
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Therefore,.

2 v(x,O)

= v(x,6*) -V dy0 w

dUe
SUe d* eed--x + - x

d
= e-.(U6*) (5.6)

d* where -x(U 6*) is defined as blowing velocity. Our second

goal is to relate the perturbation velocity, 6 Ue to the blowing

velocity. This process is quite similar to evaluating tangen-

tial velocities in the panel method. In fact, this is even

simpler because of the straight line surface.

X fb61 G(U) d (5.7)
Ue Tr-- x-

x a

where the interaction region is limited to a finite range

- x < x < X. This integral is referred to as the Hilberta- -

integral. Rewriting Eq. (5.4), we finally obtain the inter-

action law.

x
-. U (x) = 0Ox + 1 d (U,) d (5.8)
,[e e T x F (e6 x -

a
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The numerical implementation of Eq. (5.8) requires a discrete

approximation of the Hilbert integral. This can be performed

by using the trapezoidal rule.

The examples in Section V.D demonstrate that this inter-

action method can give reliable results for flows up to high

angle of attack, including flows with bubbles and separation.

C. CONSIDERATION OF BOUNDARY LAYER TRANSITION AND OF

TURBULENT FLOW MODELLING

1. Transition

One of the most important parameters to predict the

drag and lift of an airfoil is the transition point. Boundary

layer transition is affected by many parameters, for example,

the pressure distribution (major parameter), the wall roughness

and the intensity of the free stream turbulence, etc. Because

of this fact, the theoretical modeling of transition is very

complicated and one therefore resorts to experimental

information.

In the Cebeci program, the following experimental

correlation formula is used, which was given by Cebeci and

Smith (1974) as a relation between Re and Rex at transition.

Rt = 1.174(1 +22400 0.46 (59)S1.174(l + Rex)Re
e tr Rextr xt

where

Re E UeX/v
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Re - e/V

and e is the momentum thickness.

2. Turbulent Flow Model

Unlike laminar flows, turbulent flows have a compli-

cated time-dependent behavior. It is too difficult to deal

with the instantaneous properties. Thus, the mean-flow

properties are applied in turbulent flow.

The most common mean-flow models are the "eddy-

viscosity" formula which are based on thin shear laye'r

assumptions.

-pu'v' P 3u (5.10)=U Pt y

where vt is related empirically to the mean flow velocity

gradient and the length scale. In the Cebeci program, v

is presented by the algebraic eddy-viscosity formulation of

Cebeci and Smith.

I 0 < y < yc{ 0.4y [l-exp (-y/A) ]} 2I I Ytr -- < --<y

Vt= (5.11)

al f (U -u)dYly trY Yc < y < 6
0 e

More detailed descriptions are listed in Reference 7.

D. EXAMPLES

The subsequent examples were computed using a program

developed by Cebeci and coworkers IRef. 17], on the NPS IBM 370.

88

.. - 4-.: h *- -. ... .. . . . . .. . . . .. .. .. . , . .



1. Demonstration of the Program Capabilities

The velocity profiles on both upper and lower surfaces,

as well as in the wake, are presented in Figure 5.3. At

this angle of attack (a = 100), transition occurs very close

to the leading edge on the upper surface. The boundary layer

thickness is quite thin in the accelerated flow region (right

after the leading edge), but it grows thicker farther down-

stream in the decelerated flow region (near the trailing edge).

Eventually, we find a small reversed flow region just before

the trailing edge in this case. The wake region shows the

mixing layer which decays with increasing downstream distance.

Figure 5.4 demonstrates how lift, drag and the loca-

tion of transition depend on the angle of attack. The skin

friction drag is dominant at low angles of attack, the pressure

drag at high angles of attack (see Figure 5.4b).

Figure 5.5 shows the distributions of the skin friction

coefficient, displacement thickness and shape parameter in

dependence of Reynolds number and angle of attack. In the

attached flow, the skin friction coefficient decreases along

the downstream direction until the point of transition

(laminar region), but increases steeply after transition and

then decreases again because the skin friction is related to

the slope of the velocity profile, @u/Dy, at the surface. At

high angles of attack, transition on the upper surface occurs

close to the leading edge and the negative skin friction

coefficient near the trailing edge indicates separated flow.
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Also the displacement thickness and the shapeparameter increase

drastically in regions of separated flow (see Figure 5.5a).

At low Reynolds numbers, laminar flow can separate at

mid-chord and reattach (we call this phenomenon a "bubble").

Reattachment can often occur if the pressure gradient de-

creases rapidly soon after separation, so that a strong reversed

flow is not established. Thus the shear layer reattaches onto

the surface. Accordingly, the displacement thickness and the

shape parameter increase in the bubble region (see Figure

5.5b).
'0

2. Comparison with Experimental Results

The comparison of pressure distributions is shown in

Figure 5.6. The overall lift of inviscid calculations devi-

ates 20% from the experimental results. The interaction method

improves the accuracy, but the computation still overestimates

the lift. The lift coefficient obtained by Cebeci's program

is approximately 10% larger than the measured one (see Reference

8).

Figure 5.7 demonstrates that the accuracy of this method

drops with lower Reynolds numbers. The reasons for this de-

creased accuracy at low Reynolds numbers are the higher proba-

bility to separate and the used turbulence model, which seems

to be inappropriate for low Reynolds numbers. Therefore, low

Reynolds numbers and high angles of attack pose severe limi-

tations (see Figure 5.7a & b). The experimental results are

taken from References 7 and 9.

93

...........................



. . . . . ..-. .- - . --. .. _.

0010

1%

u pn

00i

4--4
. . .. . - . . . .~ ., -"

*- z, * 0 I
.? V

.. 5.

- I
: ' -' - U .

L)L
... . ... .. . . .. .. .. ..... . .... .. . . .. ... .... . . . . . . ... . ... . . a

.*... . . c ;

.. . .. . . . . .. . . .7I

:0 C'4
* )4 -4

. . ... . .. .. . .. ... G! En -

* I

4

.... .. ...... . . ............ . .

. . . 0. .
.. . . . . .. .- . . . .. . . . . . . - . . . .... . -. . . ... . .I

.. .... ....... ....... .... . ..... . ..

U,,L*

..j .... ... i . .

0-

4................ 0

oig- o'u- o' -- o'- oa '0 ' i

94



0 -4

. . ........S. iII.. .. .. ..... .. .. .. ..

. O U...... . .... .* . 0 C0

.... .... . .. .. ...... . C.... ............ ... .. ... ... ... ............ ... "-. . . " .. . .. . . . ... . .
•a 0 aj

Q " 00 _._ _o _'o o'o _ (n'

.L. W T O__ _ _ _ _ _ _ _ 0_ 0 cu M 1 -

-%0

40

0

4-4 C,

. .... .... ... .. .... . .. w . . ... ..

:~

..L .... c a- a

.... ....... . ........ .. ....... ...........

91 * r oc po . 9", T r'o ,o 0o0o!L

Ccu

... .. ... L

C)U

.. .. . .. .. ...

900
'133

95



AD-RI66 481 CONTRIBUTION TO THE ANRLYSIS OF HIGH-LIFT RIRFOIL 2/2
RERODYNAMICS(U) NRVRL POSTGRRDURTE SCHOOL MONTEREY CR
H W LEE MRR 86

UNCLASSIFIED F/G 28/4 NLEEEEEEEE



1.2.

6211 5~f 114 Uf.25

ICROCOPy RESOLUTON TESlVCHAR'

NAIIONAL BkU(4 
.4W

.14



On the other hand, experimental measurements should

not be expected to be exact. Turbulence level and interference

effects influence the wind tunnel measurements. Figure 5.7c

shows good agreement between computed and experimental results

taken from Reference 10, at low Reynolds numbers.

The location of transition and separation points have

an important influence on the lift and drag coefficients.

Figure 5.8 shows that the prediction of laminar separation,

reattachment, transition and separation points on the airfoil

surfaces are in reasonable agreement with the experimental

data taken from Reference 9.
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VI. SUMMARY AND RECOMMENDATIONS\

This thesis treats the problem of incompressible two-

dimensional steady flow past airfoils or airfoil combinations

at large angles of attack. A panel method was developed to

compute the inviscid flow over two cylinders, airfoil-flap

combinations and airfoils in ground effect. In addition,

Cebeci's viscous/inviscid interaction method was applied to

several airfoils'and compared Vth available experimental

data. The agreement is generally quite encouraging. The

calculations show the sensitivity of the computations to

Reynolds number and transition. More work is required to

evaluate the potential and limitations of the viscous/inviscid

interaction method.
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